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Alternate gauge conditions for classical charged particles are discussed. These 
gauges are suggested by unified descriptions of electromagnetism derived from 
general relativistic metrics which are velocity-dependent, Finsler metrics. In each 
of the examples it is shown that a particular gauge choice produces a potential 
which is related to the particle velocity and which identically satisfies the Lorentz 
charged particle equation. The results are related to Fermi-Walker propagation 
and are demonstrated to be consistent with the dynamics of both point and 
extended particles. 

A continuing point for discussion in electrodynamics is the fact that the 
electromagnetic field Fuv = d A v / a x  ~ -  ~A~,/3x v is not changed by a gauge 
transformation A'  u = A ,  + ~ A / d x  ~. This means that one is free to select a 
gauge by some limiting condition on the potential A u. A standard choice is 
the Lorentz gauge ~A~/3x"  =0,  which is simple and covariant. There are 
several other possibilities, however. 

Of course, in the realm of quantum field theories the gauge uncertainty 
proliferates and there is a multitude of possible choices. A good summary 
of these is given in the article by Leibbrandt (1987). 

The Lorentz gauge works fine for free fields and is also usually con- 
venient when charge is present. It is satisfied by the Lienard-Wiechert poten- 
tial for a point charge. But there has never been a compelling reason for the 
application of the Lorentz gauge to classical charged particles. As a matter 
of fact, in a recent theory of extended charged particles (Bell, 1989a) the 
Lorentz gauge is explicitly not satisfied by the self-potential of the particle 
except in the limit of large distance from the charge center. 

One of the most notable examples of a possible alternative to the 
Lorentz gauge appears in the work of Dirac (1951). He first proposed the 
nonlinear condition AuA ~'= K 2 with K some universal constant. This was 
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equivalent to A, being proportional to the particle velocity v u. This was 
soon recognized by Gabor as being much too restrictive and in a second 
paper Dirac (1952) generalized his condition to one where A~ is proportional 
to vu plus another term which he related to the vorticity of an electron 
stream. 

Dirac's idea never gained much acceptance, but it has been recognized 
even recently (Parrott, 1987) as an elegant and potentially significant 
approach to the theory of charged particles. The theory suggests a connec- 
tion between the electromagnetic field and the field of a continuous fluid. 

Actually the idea of the potential being equal to a velocity term plus a 
second gaugelike term is in line with standard electromagnetic theory. The 
equation 

m c  c d S  
A u = - - -  v u + -  - -  (1) 

e e ~ x  ~ 

is the usual relation between the potential and the action S. This is equivalent 
through a Hamilton-Jacobi analysis to the Lorentz equation for a charge 
particle in an external field (Rohrlich, 1965). Equation (1) is general and 
implies no gauge restriction on A~. However, (1) can also be considered to 
imply the form of a gauge transformation and can be used to specify a new 
potential, as will be demonstrated. 

In recent years several alternate gauge transformations which are similar 
to (1) have been discussed. 

One example, comparable to Dirac (1952), is given by Schweizer (1990). 
The gauge transformation is exactly (1) with a new potential 

c ~?S m c  
B ,  = A  u - v u (2) 

e ~x u e 

When this B u is inserted in the Lorentz equation 

aU = rli' race F v ~ v a  = rlu~ m e  \~3x ~ (3x u /  = rl ~ x  ~ 3 x ~ J  (3) 

it is not hard to see that the equation is identically satisfied. For this reason 
any potential B u which leads to (3) will be called a "natural" potential and 
the corresponding gauge a "natural" gauge. 

Of course, here the action S comes from a Lagrangian 

.~f = ( rlu~va v~)  1/2 + ( e / m c )  Ou ~ A u  v ~ (4) 

which itself has Euler-Lagrange equations which are the Lorentz equation. 
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A second set of examples of natural gauges is related to a Lagrangian 
of the form 

= [(qu v + kBuBv)vUv v] 1/2 (5) 

This Lagrangian is directly computed from a metric g~, v = rluv + kB~Bv.  

The constant k can be related to the gravitational constant (Bell, 1987). This 
Lagrangian can describe the motion of classical charged particles as well as 
(4). The Lagrangian has the form of a Finsler metric function, which allows 
the whole toolbox of Finsler geometric theory to be applied (Beil, 1989b). 
[Equation (4) is also a Finsler metric function of the Randers type.] 

It was shown in the work of Fontaine and Amiot (1983) and also in 
Beil (1987) that the equation of motion for (5), if Bay '~= const, is 

a" +k~v(~B~ ~ ) ( B Y ) v a = O  

If, for example, 

OA 
B , = A , + - -  

~3x ~ 

where A is some scalar function and 

(6) 

(7) 

B~v a = e / m c k  (8) 

then (6) is the Lorentz equation. 
Fontaine and Amiot (1983) make a particular choice for A: 

A = - C s +  e + q~ (9) 
e m c k  

The scalar function ~b satisfies (Odp/Sx~')v ~ =  1. It can be identified as an 
integral of the proper time along the trajectory of the particle, so that 
O~/8x ~ = Or/Sx ~. 

One has, recalling (1), 

+ e 3 Or 
B u = - - -  v~ + (10) 

e m c k  8x  u 

as the expression for the gauge-transformed potential function. This is 
another natural potential, since it is related to (2) by a gauge. 

In a subsequent development (Beil, 1987) the gravitational field equa- 
tions for the metric (5) were derived and it was shown that k is related 
to the gravitational constant tc by k = 4 t r  4. Thus, a unified approach to 
electromagnetism and gravitation similar to Kaluza-Klein theories was 
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obtained. A recent paper by Ferrari et al. (1989) also deals with the relation 
between Kaluza-Klein theories and this type of gauge condition. 

A third class of natural gauges can be derived from a Lagrangian 

5(' = [(0p. - kBuBv)v~'vV] 1/2 (11) 

This differs from (5) only in the sign. The equation of motion (for B,~v '~= 
const) is 

(12) 

The sign difference is significant because it allows the use of new gauge 
conditions like 

) kl/2 c v ~ -  A ,  e 

This is compatible with (1) and is simpler than (10). It is easy to see that 
when (13) is used in (12) the Lorentz equation as well as the natural gauge 
result. 

The consequences of the Lagrangian (11) remain to be explored. It 
should be mentioned, though, that the metric in this case can be written as 

g.v  = rl.v- c-2vuv~ (14) 

which is similar to metrics studied by Synge (1971) and by Kawaguchi and 
Miron (1989) in generalized Lagrangian theory. 

Each of the examples given above shares a general physical interpreta- 
tion: For a particle in an external field there is a natural gauge in which the 
rate of change of the particle velocity can be related directly to the external 
field tensor, 

e \0x ~ ~xU] (15) 

It is remarkable that this has exactly the form of the London equations 
of superconductivity (Ferrari et al., 1989). A key difference, however, is that 
Fu ~ is the external field in which the particle finds itself and not a self-field, 
so that there is no trapping of the field. It is not unreasonable, though, that 
since a free particle is, in some sense, in an environment with no resistance, 
an equation from superconductivity might apply. 

As pointed out by Schweizer (1990), (15) means that for any potential 
A. one can find a gauge transformation to a potential B. which is tangent 
to the particle trajectories at all points. 



Natural Gauges for Classical Charged Particles 1667 

A further physical insight, due to Konopinski (1978), is that the vector 
potential A u describes a "store" of field energy-momentum (or change of 
energy-momentum) which is contributing to the motion of the charge. Thus, 
the gauge transformation to Bu only involves an additive term (a vector) 
which is similar to the additive constant associated with potential energy. 
So the vector potential (or more precisely the change in the vector potential) 
is physically measurable. This throws some light on the Bohm-Aharonov 
discussions. A theory of the Bohm-Aharonov effect which directly relates 
to this is given by Apsel (1979). This is also investigated by Ferrari et al. 

(1989). 
It should be brought out that in a sense the above analysis implies no 

gauge condition at all, since no limitation on the original potential A~ is 
established. In each of the above examples (1) still holds. What is specified 
each time is the particular gauge transformation which generates a new 
potential B~. The gauge condition then fixes B~. 

It must be emphasized, however, that it is the external field which 
determines the motion of the particle and not vice versa. The gauge condition 
reflects the fact that the potential B~ can be found such that the particle 
velocity is proportional to this potential. 

On the other hand, for a different physical situation involving a fluid 
composed of charged particles an interpretation which realizes Dirac's origi- 
nal goal of relating the potential to the velocity of a fluid flow is made 
feasible. This development is explored by Ferrari et al. (1989). 

In a different vein, it is interesting that at least three different Lag- 
rangians, each with an associated gauge, all lead to the Lorentz equation as 
well as a natural potential. The theories begin to differ, though, when curvat- 
ures and gravitational field equations are computed. They are also quite 
different in Finsler geometry. It remains to be determined if this will lead to 
a clear preference among the three, or perhaps still other forms for the 
Lagrangian. 

Some further developments can be made by looking at (15) in the 
coordinate system of the particle. In this system R ~ = x" - z u is the null vector 
from the center of the particle z ~ to a field point x ~. The retarded distance 
from the particle center is p = R u d ' / c .  The proper time coordinate r is 
identified as a field T(x u) with a r / O x  u = R~ /pc .  One has 

a v u _ d v  u Or _ a u R v  (16) 
8x ~ dr  ~3x ~ pc 

so that 

m(a Rv avR  I 
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But the actual external fe ld  as seen by the particle is an average over 
all the null directions R , / p  on the backward light cone from the field point 
x". It is well known that the average of R~/p is vu/c. So 

f'~v = (m/ec)(auvv- avv~) (17) 

The bar indicates the null cone average. But this is just a Fermi-Walker 
propagator. So the Lorentz equation is seen to lead to an expression for 
Fermi-Walker transport. A similar propagation equation for accelerating 
charges was recently derived by Hogan and Ellis (1989). 

This type of analysis can be used to compute the observed current of the 
external fieldje ~ = (c/4Jv) OP t V/Ox". As in (16), 8au/Sx v= gtuRv/pc, so that 

.v m (h~'R,v v dVRuv "3 

7 7 J 
This vanishes either for uniform acceleration or for a null cone average. 

This is to be expected, since the source of  the external field is distant. 
The effect of this gauge on the total dynamics of  the particle can now 

be examined. A recent theory of the extended charged particle (Beil, 1989a) 
is used. In this theory the particle extension is in the p direction and is 
described by a shape function g(p). The self-potential of  the particle is 

e g(p) 
As - 7.) ~ 

c p 

This produces the field tensor 

F, = - -  (RUaV-RVaU)---(R~vV-RVv ") 1 (18) 
pc pc c 2 J -@p 

and the self-current, 

c r v 
jr= 

4~ ~x ~ 

47vp [ L \pdp  dp 2] dp2J-~ c dp 

RuF . . . .  fd2g 1 dg~ ~R~ dg 
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The total current over a 3-space volume is 

j~ 1;j~ 2 =- ~ p dp df) 
r 

efo~ [ ~ 4a~'dg p d d 2 g  =_ p --v ~ + 
c L ap 3 c d p  3 c d p  2 

p2 a2vU d2g a2v ~ dg] p d ~ dg ~ t- p dp 
3 dp 3 4 GT  Zp J 

This can be simplified by integration by parts and the charge normaliza- 
tion condition, 

fo ~ d2g dp = - 1 P dp ~ 

to 

J ~ = e v u + 2 e a ' f o ~  dg +3~ 3 f0~ ~ c ~ p ~ p d .  - - d "  p2 dp (19) 

The momentum transfer of the self-field (18) could be computed as in 
Beil (1989a). The results there show the appearance in the equation of 
motion of a rest mass term, the Larmor term, and additional terms involving 
the rate of change of the shape function. This is all unaffected by the gauge 
choice for the external field. 

The momentum transfer of interest here is that due to the interaction 
of the self-field (18) and the external field (17). The equation which results 
for the rate of change of the interaction four-momentum P~ is 

dPJ/ e-,uv e -uv. fo~ 2dg e f S  dg -- Fe Vv - - F e  av d p + 2 ~ - u v  dr c +3c 3 p ~pp re av p ~p dp 

[see equation (49) of Beil (1989a)]. 
Now, when explicit use is made of (17), we obtain 

dPUi m fo~ dg m 2 . fo~ dg - maU - 2 a2v ~ ~p dp dv ~ p ~ d p - ~ ( a a  +aVdvv ~) p2 
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With the assumption of uniform acceleration, (l ~ = - ( a 2 / c 2 ) 0  ~, the inter- 
action energy-momentum is 

fo ;0 p~/ = m ~  + 2 m a . ~ dg m .~ p2 dg 
c P pdP+3c2a  pdp 

But comparison with (19) immediately implies 

J~ = ( e / m c ) P ~  

This shows the connection between the current of the extended particle 
and the interaction with an external field. It indicates that the natural gauge 
is consistent with the extended particle model. Obviously, for a point particle 
j u  = ( e / c ) v ' ,  as expected. 
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